Parallel computations in nonlinear solid mechanics using adaptive finite element and meshless methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PARALLEL ADAPTIVE hp-FINITE ELEMENT METHODS FOR PROBLEMS IN FLUID AND SOLID MECHANICS

This note is a brief review of on-going work on parallel, adaptive. hp-methods and on domain decomposition and preconditioning schemes for such methods.

متن کامل

Adaptive Finite Element Methods in Flow Computations

This article surveys recent developments of theory-based methods for mesh adaptivity and error control in the numerical solution of flow problems. The emphasis is on viscous incompressible flows governed by the Navier-Stokes equations. But also inviscid transsonic flows and viscous lowMach number flows including chemical reactions are considered. The Galerkin finite element method provides the ...

متن کامل

Adaptive finite element methods in computational mechanics

In this paper, we review the general approach to adaptivity for finite element methods presented in [l-16]. We also present new theoretical and computational results for linear elasticity, non-linear elasto-plasticity and non-linear conservation laws illustrating the general theory. The basic problem in adaptivity for finite element methods may be formulated as follows. Suppose 9 is a given (in...

متن کامل

Mixed Stabilized Finite Element Methods in Nonlinear Solid Mechanics. Part III: Compressible and incompressible plasticity

This paper presents the application of a stabilized mixed strain/displacement …nite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the stan...

متن کامل

Edge-based Finite Element Techniques for Nonlinear Solid Mechanics Problems

Edge-based data structures are used to improve computational efficiency of Inexact Newton methods for solving finite element nonlinear solid mechanics problems on unstructured meshes. Edge-based data structures are employed to store the stiffness matrix coefficients and to compute sparse matrix-vector products needed in the inner iterative driver of the Inexact Newton method. Numerical experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Computations

سال: 2016

ISSN: 0264-4401

DOI: 10.1108/ec-06-2015-0166